If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2-36x=0.
a = 72; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·72·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*72}=\frac{0}{144} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*72}=\frac{72}{144} =1/2 $
| 2^x=2/64 | | 6x-9.5=42 | | 24=4(m-85) | | 23d=2,392;d | | 2+a/4=-4 | | 24=4(m-85( | | -4t(5t+7)=32 | | 18m=36;m | | 0.4(10x+17)=3.8(0.2x+5) | | 5(p+5)=50 | | -x-21=19-5x | | 60=x-16;x | | 5|x+3|-4=8|x+3|-45∣x+3∣−4=8∣x+3∣−4 | | 231.5p=400 | | 8(b-86)=16 | | 32=s-19;s | | 4/b=12 | | 5/1+4/1m=5/3 | | 1+x/3-10=-4 | | 20=y+12;y | | F(x)=49.95x+20 | | 2(y+4)=36 | | x/2+2x+x=180 | | 8(7-x=24 | | 9i+8=5i-6 | | 13x-4-2x=73 | | y/10-1=3 | | -15-8x=-9x+5 | | x+24.5=34.8 | | −6x=−24 | | 8=x/3-6 | | 2/7(14)=n |